Using the MS Flex Grid Control in Microsoft Access

Version 1.4 August 2009

Compiled by Peter Hibbs

Introduction

These notes describe how to use the Flex Grid ActiveX control in a Microsoft Access 2000 (or later) database. The sample database file FlexGrid Demo.mdb shows a few examples of how the control can be used. These examples are only guides however, you will probably need to make changes to the code to suit your particular requirements. This demonstration database uses the standard Flex Grid control (i.e. MSFLXGRD.OCX), the later version is the Hierarchical Flex Grid control (MSHFLXGD.OCX) which has a few more facilities but is not covered in these notes.

A Flex Grid control is ideal for displaying data from a table or query on a form where you need to show specific records and/or fields in a different colour or font type. It can also group identical fields, sort columns, align text or display graphic images to make complex data easier to understand. It does not have any built in editing facilities like a bound continuous form has but it is possible to provide some limited field editing using the techniques described below. Note that these notes are not a tutorial for the Flex Grid control but more of a handy reminder of the various facilities, see Microsoft Help for more detailed information.

Installation
To try out the example database first unzip all the files in the FlexGrid Demo.zip file to a folder on your hard disk. The folders called Flag Images and Line Images (and their contents) must be in the same folder as the FlexGrid Demo.mdb file. Note that you need to have a screen resolution of 1024 x 768 pixels (or higher) to view the forms in this demo program.

Move the ActiveX control file (MSFLXGRD.OCX) to your C:\WINDOWS\system32 folder, (or C:\WINNT\System32 for Windows 2000) where C: is the drive letter for your Operating System, if there is already a file with this name in the folder then you should replace it with the newer version (make a back up copy of the old one first though, just in case).

If you add the file (or replace an older version) you will need to register it when you have copied it to the system32 folder. To do this click on Start –> Run… and enter ‘regsvr32.exe msflxgrd.ocx’ (without the quotes) and then press the ENTER key. You should then see the message :-

dllRegisterServer in msflxgrd.ocx succeeded

You should now be able to open the FlexGrid Demo.mdb database. In Vista you should right click on a command prompt (choose Run as Administrator) and then type regsvr32.exe msflxgrd.ocx You should see dllRegisterServer in msflxgrd.ocx succeeded. You may also need to temporarily disable User Account Control (UAC) to register the control, see this site for more information :-

http://www.netgautam.com/wordpress/2007/08/21/register-dlls-and-ocx-files-in-windows-vista-regsvr32/
If you are using Access 2007 to test this program you will first need to make sure that the database is placed in a ‘trusted location’.

See References section below for Flex Grid license issues and code to register a flex grid control.

Opening the Flex Grid Demonstration Database
When you run the program you will first see a Switchboard form with a number of menu groups on the left hand side and one or more menu options on the right hand side. Click on each group in turn to display a number of options for that group. Click on the menu option to open a form, display a report, etc. A brief description of each demo form is given below.

If you want to know how to use any of these examples you should study the VBA code in each form, the relevant sections below will give a list of the tables, queries, forms and modules that would be required for the code. The code is fairly well documented to make it easy to see what each function does.

Flex Grid Switchboard
The Switchboard form uses a Flex Grid control to demonstrate how this can be used to give the user an easy method of choosing a form and/or report on databases that have a large number of forms and reports. If the standard Access switchboard wizard was used to provide this option it would probably require numerous sub-menus and the user would probably have to click several buttons to get to a particular form. Using a custom-designed menu system would mean using dozens of buttons and/or list boxes to give the user access to the forms and reports. Using a Flex Grid control system, this can be done with just one control (the Flex Grid control) and a couple of Text box controls and the user will then only need to click one or two options to open any form or report in the database.

Using the Switchboard Menu
When the demonstration database is opened the switchboard form is displayed with the first main menu option active, that is “Main Menu”. The right hand column shows the seven options associated with the ‘Main Menu’.

To select a main menu option just click on the menu option in the left column. The right column will then change to show the various options for that main menu, the colour of the cell text and background colour will also change to match the main menu cell to indicate which main menu option is currently selected.

To choose a sub-menu option just click on the required cell, i.e. ‘1 – Flex Grid Switchboard Wizard’, or press the key on the keyboard which corresponds to the first character in the cell (i.e. 1 to 7). Note that the keyboard keys apply to all the cells so that pressing key P or C is the same as clicking on the Projects or Charts & Graphics menus.

If a sub-menu text is displayed in grey it indicates that this option is not currently available (select ‘General Forms’ on the main menu to see an example) and this is set by the Priority setting, see below for more details. Note that the priority value is actually displayed on the switchboard form for this demo although it would normally be hidden in a real application.

See notes in next section for explanations of other menu options.

Using a Flex Grid Switchboard in Your Own Project
If your database project has a large number of forms and reports, etc and you would like to use this system as your switchboard, I have also provided a Switchboard Wizard form which you can use to set up the switchboard system easily. You can see how it works by choosing option 1 on the Main Menu (although you would not normally give your users access to this wizard in a real application).

To create your own flex grid switchboard follow these steps :-

Open your database and import the following objects using File -> Get External Data -> Import…

1. Import tblSwitchboard from the Tables window. After it has been imported, delete all the records in this table ready for your own switchboard settings.

2. Import frmSwitchboard and frmSwitchboardEditor from the Forms window.

3. You could import rptList from the Reports window (which shows a list of switchboard menu items, etc) if you think it may be useful although it is not necessary for the operation of the switchboard.

4. Import modFlexGridRoutines and CommonDlg from the Modules window. Note that if you are already using a flex grid control you may have the first module installed. The second module is used to open the Windows Colour Picker, if you already have some similar code you could probably use that instead.

After importing those items you should compile your code to ensure that you do not have any duplicate function names, etc.

After you have deleted all the records in tblSwitchboard you could run Compact & Repair to reset the table AutoNumber field to 0 and then you should open the form frmSwitchboard in Design mode and make all the necessary changes required for your application. Just ensure that you leave the flex grid control, flxgrd, the Text box controls txtMode (and txtPriority if you will be using this facility, see below for more information on priorities). Note that you will need to make the txtPriority control invisible before you distribute the database to your users. The remaining labels and image can be changed or deleted as required. You should also leave all the VBA code as it is (you may, however, need to make some minor changes, as described later). If you want to make the flex grid control a different size you can adjust its size as required, the VBA code will automatically adjust the internal sizes of the cells to fit the size of the control.

Setting Up Your Switchboard
You can now set up your switchboard form with your menu options by double clicking on the form frmSwitchboardEditor in the Forms window. The number of possible menu options available is equal to the square of the number of rows in the menu. For example, in this demo version there are seven main menu choices (which uses seven rows) so since there are seven sub-menu options for each main menu option, we could have a maximum of 49 sub-menu choices (although we don’t have to use all of them, of course).

You should plan your menu design so that you have sufficient sub-menu rows to cater for the number of forms, reports or whatever that you need to access. If, for example, you had 90 forms, reports, etc you would need 10 main menu rows which would give you a possible 100 sub-menu choices. Note that the flex grid code automatically formats the grid to show the rows as you add them using the wizard. You should also plan your main menu names so that you can group your sub-menu options with each main menu option, i.e. a main menu for ‘Reports’ would give access to your reports (or forms that allow reports to be printed) and so on. Once you have the menu names and sub-menu options prepared you can start adding records to the switchboard table. When planning your menu names you should try and have each menu name start with a different character because that allows the user to just press that letter on the keyboard to open that sub-menu. As this would be quite difficult to do for all the sub-menus as well you could use the digits 0-9 as the first characters on the sub-menus (as I have done in this demo) so that the user would just press a letter key to choose a main menu and then a digit to choose the sub-menu option.

With the switchboard wizard open you should first enter all the main menu options (you do not have to these all at once but I have found it easier to have the main menus in place before entering the sub-menus). The switchboard wizard has two tabs, Main Menu Options and Sub-Menu Options, add main menus using the first tab and switch to the second tab to enter sub-menu options.

Main Menu Options

To add a new main menu option click the Add Item button on the Main Menu Options tab, enter the menu name in the pop-up form and click OK (note that you must not use the double quote character (“) in a menu name although the single quote character (‘) is allowed). The menu name will then appear in the list box with the default colours for the text (black) and background (white) colours. If you want to change the text and background colours you should now click on the Set Fore-Color and Set Back-Color buttons respectively to change them (although the fore-color of black is normally OK). The Menu Colors text box shows the colours you have chosen. The Set Grey-Color allows you to change the colour of the text when the menu item has been disabled and defaults to a light grey. If the background colour you chose does not show the grey well (and you will be using this facility) then you can change it to a different colour, normally the grey colour is satisfactory. Note that you cannot set the back colour of a flex grid cell to black using colour 0 because this has a special meaning to the flex grid control and it will just display it as white (no, I don’t know either). To use black, use colour code 1 (as I have in this demo).

If you have added several menu items and you want to change the order in which they appear on the menu then you can use the Move Up and Move Down buttons to move the menu items. Select the item to move and click the appropriate button. This option is also available on the Sub-Menu Options tab for sub-menu items.

To delete a menu item select the menu item to be deleted and click the Remove Item button. Note that you cannot delete a main menu item if there are one (or more) sub-menus that use all the current rows. For example, in this demo the Main Menu has seven sub-menu items, if one of the main menu items was deleted there would then only be six rows which means that one of the sub-menus for the Main Menu would not have an associated main menu. In this situation you would need to delete some sub-menu items or re-allocate some sub-menus to different main menus. This is a good reason to plan your menu layout properly before you start adding main menus and sub-menus and remember to allow for future expansion.

To change the name of a main menu item first select the item and click the Edit Text button, amend the text and click OK. Note that you cannot have two menu items with the same name (obviously).

The width of the main menu column defaults to 1500 Twips (just over an inch) and the width of the sub-menu column is automatically set in code and will be the width that you have set for the flex grid control less 1500 Twips. If the first column needs to be set wider to accommodate some main menu names then you can set it to a different width by changing the value of the constant conMenuWidth which is at the beginning of the DisplaySwitchboard procedure in the form frmSwitchboard.

Click the Close Form button to exit the wizard. If you have made any changes to the switchboard menu the form Activate event will trigger and re-display the flex grid control to show the changes.

Sub-Menu Options
When you have added one or more main menu items you should click on the Sub-Menu Options tab to add the sub-menu items for each main menu. Select the required main menu item in the Select Main Menu combo box (if you clicked on a main menu item in the list box on the first tab, that menu will already be selected).

To add a sub-menu to the selected main menu click on the Add Item button (note that if this menu is full, this button will be disabled and a message to say the menu is full displayed above the buttons). Enter the name for this sub-menu and click OK. The Command combo box will then be displayed, select the appropriate command from the list, the functions for each are as follows :-

1. Open Form in Add Mode. This will open the selected form in Add mode. When you select this command the Select a Form combo box will appear so that you can choose a form from a list of forms in the database.

2. Open Form in Edit Mode. This will open the selected form in Edit mode. When you select this command the Select a Form combo box will appear so that you can choose a form from a list of forms in the database.

3. Open Report (Preview Mode). This will open the selected report in Preview mode. When you select this command the Select a Report combo box will appear so that you can choose a report from a list of reports in the database.

4. Print Report Immediately. This option will send the selected report directly to the printer. When you select this command the Select a Report combo box will appear so that you can choose a report from a list of reports in the database.

5. Quit Application and Access. This option will first show a message dialog asking the user if they are sure if they want to quit the database and if they click Yes, it will close the application and close Access. Of course, you could substitute your own dialog box form in the form frmSwitchboard if you want to.

6. Exit Application. This option just closes the database (with no warning) but leaves Access running (not very useful but is what the Microsoft version of the Switchboard does so I left it in).

7. Run Macro. This will run the selected Macro. When you select this option the Select a Macro combo box will appear so that you can choose a Macro from a list of Macros in the database. When the user clicks on this option on the menu the selected Macro will be executed.

8. Run Code. This will execute the selected function which you must enter in a standard module. You should enter the name of the sub-routine in the Function Name field. When the user clicks on this option on the menu the selected code will be executed.

9. No Action. This option can be used if you want to add a sub-menu option but do not, at the current time, want to use it. When the user clicks on this option on the menu nothing will happen. In this demo, items 4 and 5 on the Main Menu option are set to this. An additional facility with this command is that, if you start the menu name with a – character, the menu is left blank. This is useful if you want to have a sub-menu with no action but do not want any text showing. Just ensure that any other sub-menu names do not start with this character. Two of the sub-menus on the ‘Projects’ menu are set to this.

As with the main menu options, the Remove Item and Edit Text buttons can be used to delete or change the name of the currently selected sub-menu item.

Priority Codes
It is sometimes necessary to prevent some users from using certain menu options and to make this easier to implement I have added a ‘priority’ system to the switchboard code. It works like this – whenever a user logs on to the database they are allocated a priority value between 0 and 9 (this information would normally be stored in the employee table) where 0 is the lowest priority and 9 is the highest and would normally have access to all parts of the database. At log-on, your program would copy the employee’s priority value to the txtPriority field on the form frmSwitchboard (this form would, of course, need to be open all the time the database is in use).

Whenever you create a new sub-menu item, the Priority Code setting defaults to 0 which means that any user with a priority code of 0 or above can use that sub-menu facility. If you want a particular form or report to only be available to users who have a higher priority code then you would enter the appropriate value in the Priority Code field for that sub-menu item. For example, if a particular form should only be available to priority 9 users then enter 9 into the Priority Code field for that menu option. Whenever a user displays the switchboard form the flex grid code compares the value in the field txtPriority with the priority value for each sub-menu item and if the value in this field is lower than the sub-menu priority value the text is displayed in grey and the menu is disabled.

To test the facility, open the ‘General Forms’ main menu and note that item 3 on this menu is currently ‘greyed out’ and that clicking on it has no effect. This menu option is set to priority 9 and the current user priority is set to 5 (as there is no log-on facility in this demo I just set the default value to 5 for this field). Since the user’s priority is 5 and this menu item priority is 9, this option is not available to the user. If you now change the value in the Set User Priority field to 9 and click on the ‘General Forms’ main menu again you will see that item 3 is now enabled and you can click on it, as normal.

If you want to use this facility you should make sure that the priority value for each logged on user is copied to this field on the switchboard form (of course, this will only work for split databases where each user has their own front-end file). Then set the priority code for each sub-menu item to the priority level that each user can use, if a user has a priority code which equal to or higher than the sub-menu priority code then they will be able to use the menu option, otherwise it will be disabled. Also you should hide the txtPriority field on the switchboard form (as you wouldn’t want users changing it themselves).

If you do not need the priority facility then either change the Default value of the txtPriority field to 0 (which would allow all sub-menu options) or remove the relevant code from the flex grid VBA code.

Open Arguments
It can sometimes be useful to be able to open the same form or report from the switchboard and have different data displayed on the form or report depending on the menu option. You can do this by using the Open Args facility on the sub-menu tab. Whenever you select a form (or report in Access 2002 or later) the Open Args field is displayed and you can enter some text here which will be passed to the form or report in the OpenArgs variable which can then be used to change a parameter or query criteria in code.

To see a demonstration of this option open the ‘Open Args Forms’ on the main menu, the first option opens a form which shows all the Northwind orders with the shipping companies used. Options 2 to 4 show the orders for each shipping company in turn.

If you look at this menu in the switchboard wizard you can see that the Open Args field is blank for the first option and holds the three shipping company names for options 2 to 4. The form frmOpenArgs copies the value in the OpenArgs variable to a field on the form which is then used to filter the query that is bound to the list box which displays the orders.

If you open a report from the switchboard this option is currently disabled because reports cannot have open arguments passed to them in Access 2000. If you need to use this facility on reports and you are using Access 2002 or later then you should find the appropriate lines of code in the two switchboard forms and add them into the code. Do a Global search in the VBA code for “A2002” to find them.

Flex Grid Switchboard Table Details

All the information that is displayed on the flex grid switchboard is stored in the table tblSwitchboard. You would not normally need to look at the table data directly since the switchboard wizard sets up the table records automatically but here is a brief description of the various fields.

The table contains two separate sets of records, one set of records for the main table items and a second group of records for the sub-menu items. The function of each field is as follows :-

1. The ID field (AutoNumber) is used purely to identify each record.

2. The MenuType field (Long Integer) determines the record type and is set 0 for all main menu records, the values greater than 0 are for the sub-menu items, the actual value determines which main menu the record belongs to. For example, the seven records with 1 in this field belong to main menu 1 and so on.

3. The GroupOrder field (Long Integer) determines the sorting order for main and sub-menu items and is also used to identify which sub-menu records are linked to this main menu record (which are stored in the MenuType field).

4. The ItemText field (Text) holds the main menu and sub-menu names.

5. The TextColor field (Long Integer) has two functions – for main menu records it holds the colour code for the main and sub-menu text colour, for sub-menu records it holds the command code for the sub-menu function, i.e. 1 = print report to printer, 2 = open form in add mode, etc.

6. The PageColor field (Long Integer) also has two functions – for main menu records it holds the colour code for the main and sub-menu background colour, for sub-menu records it holds the priority code for the sub-menu function, (0-9).

7. The Argument field (Text) also has two functions – for main menu records it holds the text colour code for any disabled (greyed out) sub-menu items, for sub-menu records it holds the name of the form, report, macro or VBA code procedure.

8. The OpenArg field (Text) holds the text string that is passed to a form (or report) in the OpenArgs variable.

Flex Grid Switchboard Code Information

There are a number of flex grid properties that you may want to change for your own application. Most of these can be set using VBA code and would normally be set at the beginning of the DisplaySwitchboard sub-routine in the frmSwitchboard form.

For example, you could show all text in bold or use a different font name or font size, etc. Just amend the appropriate lines of code in this procedure as required.

As mentioned above, if you need to have the first flex grid column wider than 1500 twips you can change the value of the constant conMenuWidth in this procedure. Probably trial and error is the easiest way to determine the required width and you may need to change it as you add new main menu names.

If you want to change the default value for the grey text colour code used for disabled menu items you need to find the Private Sub btnAddMain_Click() procedure in the form frmSwitchboardEditor and change the value of the constant conGrey there.

Resources

This facility uses the table tblSwitchboard, the forms frmSwitchboard and frmSwitchboardEditor, the report rptList and the modules modFlexGridRoutines and CommonDlg.

Projects 1- Project Management Form
This example shows how a Flex Grid control can use graphics images to simulate other controls which cannot normally be used in Access (such as the List View control). The horizontal progress lines and the + and – boxes are made up from small graphics images stored on disk and copied to the grid as and when required. The Start Date is forced to 4th October 2006 in the form Open event for this demo but you could use the Select Start Date field to enter any date, normally this date would be set to the current date on a real application. Click the Expand All Projects button to show all the projects, clicking the Next Day and Prev Day buttons moves the start date forward or backward one day at a time.

Clicking on the + or – image in the Project / Task Title column will expand or contract that project and (in code) shows how you can use the mouse x and y co-ordinates information to detect when the user clicks on part of the grid. The x in the box indicates that the project has no tasks allocated.

As with the previous examples when the user clicks on a project or task line you could open a form to allow them to edit it, add new lines, delete a line, etc, etc.

Resources

This form uses the tables tblProjects and tblProjectTasks, the queries qryProjects and qryTasks, the form frmProject and the module modFlexGridRoutines.

Projects 2 – Northwind Orders Summary
This example shows how a Flex Grid control can display multiple lines of data with some rows in different colours in order to highlight specified data. The data shown is taken from a number of tables imported from the Northwind database, (note that I have prefixed the names of the tables with tbl to conform with the preferred Hungarian notation system).

This form might be a typical form showing a summary of orders and items ordered together with supplier, category, shipping company and contact names. Note that individual cells can also be coloured differently to highlight (in this example) incomplete orders and zero stock levels. A different Customer name can be selected from the combo box which will then redraw the Flex Grid control to show data for that customer.

If you click on an Order line (the pale yellow rows) you could (although not in this example) open an Orders form for the selected order using the OrderID field as a reference.

Resources
This form uses the tables tblCategories, tblCustomers, tblEmployees, tblOrderDetails, tblOrders, tblProducts, tblShippers and tblSuppliers, the queries qryDetailProgress and qryOrderProgress, form frmOrders and the module modFlexGridRoutines.

Projects 3 – Time Sheet Management
This example shows how a Flex Grid control can display data from a table and then update the table with new records (or amend existing records) when data in a Flex Grid control cell is entered. The form shows the number of hours (and overtime hours) that each employee has worked for the selected week. There are two columns for each day, the first is the normal hours and the second is the overtime hours. The total hours are shown for each row (i.e. employee) and for each day.

The timesheet data is stored in table tblTimeSheets (linked to tblEmployees) which holds one record for each working day for each employee. When the user exits a cell the code in the Leave_Cell event first checks to see if there is a record already existing for the employee and date and if there is not one, it adds a new record to the table. If the record exists then the value of the HoursWorked (or HoursOvertime) field is updated with the new value. Note that in this example, column 17 of the grid is a hidden column and is used to store the EmployeeID number.

The frmTimeSheetEntry form is used as a hidden sub-form and is made visible when the user clicks on an editable cell in the grid. The editing facility is similar to the frmFlexGridEntry form used on the frmImages form (described below) except that more keyboard operations have been added, namely the Page Up, Page Down, Home, End and Enter keys to enable the user to move around the grid. Note that the TAB key moves the cursor to the next cell to the right and the ENTER key moves it to the next row on the same column (although you can change this in the code, if necessary).

Note also that in the Open event of the form the Week Ending date is set to June 6 2009 (because that is the week that has any data) but normally this would default to the current week.

Resources

This form uses the tables tblEmployees and tblTimeSheets, the forms frmTimeSheet, frmTimeSheetEntry and the module modFlexGridRoutines.

Charts & Graphics 1- Graph of Northwind Orders per Year
This example shows how a Flex Grid control can display a simple bar graph to show data from a table. The data shown is taken from the table tblOrders (which was imported from the Northwind database). The graph shows the percentage orders for each month for the selected year. Note that data is only available for the years 1994 to 1996.

In this example the flex grid lines are hidden but you can display them by clicking on the Show Grid Lines tick box. If you enter a value between 1 and 100 in the Set Ref Line box, a reference line is drawn across the grid in that row position. Set it back to 0 to hide the line.

This graph is obviously not as comprehensive as a standard Chart object but it has the advantage that you could easily change the layout and data shown with the click of a button.

Resources

This form uses the table tblOrders and the module modFlexGridRoutines.

Charts & Graphics 2- Using Images on Flex Grid and Edit Fields
This example shows how a Flex Grid control can display graphics in a cell and also how to edit text in a cell. The data shown is taken from the table tblSuppliers (which was imported from the Northwind database). I have added a new field called FlagImage which holds the name of the image file for that country. The images themselves are stored in the Flag Images folder, note that in this example this folder must be in the same folder as the program file (the pathname is calculated and displayed at the bottom of the form and then concatenated with the filename prior to being copied to the Flex Grid control). You will need to use a different method of accessing the image files if you want them in a different location.

Editing Data in a Cell

When a Flex Grid control is used in Visual Basic the recommended method to edit text in an individual cell is to position a text box control on top of the selected cell, enter the text in the text box and when the user leaves the text box, copy the contents of the text box back to the selected cell and then hide the text box. Unfortunately, due to the different way an Access form works, this is not possible (the text box control is always hidden underneath the Flex Grid control).

However, it is possible to do this (with certain limitations) in Access and you can test this system by clicking on any cell in columns 3 to 5 on this form. The method used here is to create a hidden sub-form with a single text box control and then resize and position the form over the selected cell. When the user clicks on a cell, any existing text in the selected cell is copied to the text box on the sub-form and the form is then made visible. As the user enters (or edits) text in the text box it is immediately copied back to the Flex Grid current cell (but not yet to the table). When the user has finished with the current cell he would either click on another cell or click on some other control on the main form, this action will move the focus back to the main form. He may also press the TAB key to move to the next cell on the grid, see the code in the frmFlexGridEntry form for details. Note that the first/last rows/columns are defined in the txtCell_KeyPress event so that the code knows where to move the cursor when the user reaches the last row or column. You will need to set these for your own flex grid layout. Also, if you need to do any checks on the data the user has entered into the cell, you should do this in the AfterUpdate event of the txtCell control (not used in this example). Note also that the keyboard arrow keys can be used to move the text cursor around the grid except that there are no tests done to stop the cursor movement as there is for the TAB key (I could have done this but it shows what happens when you move to a picture cell, i.e. the sub-form image hides the picture in the cell).

If the user clicks on another cell in the Flex Grid the RowChange event is used to hide the sub-form, if the user scrolls the grid the Scroll event is used to hide the sub-form. If, however, the user should click on another control on the form there is no convenient Flex Grid event which can be used to hide the sub-form so in this case the GotFocus event of the control/s is/are used to hide the sub-form (you can test this by clicking on a Flex Grid cell and then clicking on the Location of Images field).

When the user closes the main form the code in the Form_Close event copies the updated contents of the Flex Grid control back to the table (tblSuppliers) using the SupplierID field as a reference. There are other ways of updating the table, for example, the Time Sheet Management form described above updates the table when the amended flex grid cell loses the focus, the best method to use will depend on the design of the program and the nature of the data in the grid.

Resources

This form uses the table tblSuppliers, the forms frmImages and frmFlexGridEntry and the module modFlexGridRoutines.

General Forms 1 - Resize Field Heights to Fit Text
This example shows how a Flex Grid control can display multiple lines of text where the height of the row is automatically adjusted to fit the amount of text being displayed. Note, however, that the height is only an approximation – if the text includes a blank (or almost blank) line the last line of text can sometimes be partly hidden. If this is likely to happen you will need to modify the code accordingly.

To use this example in your own project you should change the constants in the code module as follows :-

Const conChrsPerLine As Long = 140 'approx number of chars on line (Tahoma font)

Const conRowHeight As Long = 200 'approx height of single row in Twips (8.25 pts)

The simplest method is to create the Flex Grid control for the required size and then change the constants by trial and error until you get the desired display.

The rows are coloured white and green alternately to demonstrate how you would do that (if you really wanted to, see the VBA code) and if you click on a field the text and the back colour is copied to the field at the bottom of the form.

Resources

This form uses the table tblResizeFields, the query qryResizeFields, the form frmResizeFields and the module modFlexGridRoutines.

General Forms 2 - Form With Multiple Columns on a Line
This example shows how a Flex Grid control can be used to show data from a table (or query) as records displayed horizontally on the form, i.e. show records 1, 2 and 3 alongside each other with records 4, 5 and 6 below them and so on. There are times, especially when a whole record consists of only one or two fields, that this is a useful option. This would be quite difficult to do using standard Access controls or sub-forms but can be done easily with the Flex grid control.

The example shown allows you to display the data in one, two or three columns by selecting the appropriate option button and also you can select the sort order with the Sort On combo box. Since a Flex Grid control can only sort on whole columns you would need to sort the data in the query, as shown in the code.

Note that the font for the first column in each group is changed to Wingdings 3 so that the black triangle (character u) can be shown in this column when the user clicks on a record. When the user clicks on a record the unique ID number is copied to the Current Record ID field, and the row and column numbers are copied to the Row and Col fields. Note that the Col field always shows the first column number in the group (i.e. 0, 6 or 12) which you can then use to access any of the other fields, if necessary.

Resources

This form uses the table tblProducts, the query qryMultiColumns, the form frmMultiColumns and the module modFlexGridRoutines.

Flex Grid Utilities 1 - Show Flex Grid Events

This example shows how a Flex Grid control handles events. The Flex Grid control shows a list of products from the Northwind database table (tblProducts) and the large text box on the right of the form shows the events as they occur. To trigger an event just click on the Flex Grid control, the various events that run will be displayed in the text box. Click the Clear Event List button to clear the list. Note that in this Flex Grid example the last column (Off) has been changed to the Wingdings font so that a proper tick character can be displayed in this column instead of the Boolean True/False values as supplied by the query.

Event Types

There are two basic types of events, ones that are triggered by the Flex Grid control as a whole and ones that are triggered by individual cells. In the list all events that are triggered by the Flex Grid control are preceded by the words ‘Flex Grid –‘, for example :-

Flex Grid - Enter Event

This shows the Enter event that is triggered when the Flex Grid receives the focus. Individual cell events just show as that. For example :-

Leave Cell Event [Row = 26, Col = 3]

This shows the LeaveCell event for the cell at Row 26, Column 3. Note, however, that the Row and Col information within square brackets shown in the list is added by this program, it is not part of the Event definition. The values are easily obtained in the Event code by reading the Row and Col properties of the Flex Grid control. For example :-

Private Sub flxgrd_EnterCell()

Dim vRow As Long, vCol As Long

vRow = flxgrd.Row

vCol = flxgrd.Col

End Sub

Event Parameters

Some events do provide additional information which can sometimes be used in your code. For example the Mouse events provide the state of the control keys on the keyboard and the buttons on the mouse as well as the X and Y co-ordinates of the mouse. This extra information is shown in brackets on the events list, for example the MouseUp event displays like this :-

Flex Grid - Mouse Up Event (Button = 1, Shift = 0, x = 5205, y = 2295)

The Button value indicates which mouse button is pressed, 1 for Left Mouse button, 2 for Right Mouse button and 4 for the Mouse Scroll button.

The Shift value indicates which control key is pressed when the mouse button is pressed, 1 for the SHIFT key, 2 for the CONTROL key and 4 for the ALT key.

The X and Y values indicate the position of the mouse (in twips) relative to the top left corner of the Flex Grid control.

The keyboard events are similar to those above, the KeyDown and KeyUp events also provide information about the keyboard state. In the example below the Keycode value gives the decimal value of the key and the Shift value indicates which control key was also pressed (see above for values).

Flex Grid - Key Down Event (KeyCode = 65, Shift = 0)

Bear in mind that the Flex Grid control must have the focus for any of the Keyboard events to trigger, click on the control before pressing a key when testing these facilities. If you hold a key down the keyboard auto-repeat facility will generate multiple event triggers, you can disable the KeyDown and KeyUp events by ticking one or both check boxes at the bottom of the form.

Mouse Events

The MouseMove event is normally disabled in this demo, to see why tick the Enable Mouse Move Tracking Event box and move the mouse over the Flex Grid control.

Whenever the Click (and various other) events are triggered the row/column position of the mouse pointer is present in six different properties, as follows :-

flxgrd.Row holds the row number when the mouse button is pressed.

flxgrd.Col holds the column number when the mouse button is pressed.

flxgrd.MouseRow holds the row number when the mouse button is pressed inc fixed rows.

flxgrd.MouseCol holds the column number when the mouse button is pressed inc fixed columns.

flxgrd.RowSel holds the row number when the mouse button is released.

flxgrd.ColSel holds the column number when the mouse button is released.

The contents of these properties are shown in the six text fields at the top of the form. Note that the Row and Col fields (in white) show the mouse location when the button is pressed, also if you click on a Fixed Row (or Column) the Flex Grid control returns the nearest Row (or Column) that is not fixed, i.e. if you click on the header row (Row 0) the Row value is set to 1. The MouseRow and MouseCol properties, however, always return the row and column that the mouse pointer is currently on and could be used to determine which fixed row or column the user clicked on. The RowSel and ColSel properties return the row and column that the mouse is on when the user releases the mouse button after dragging the mouse pointer over a group of cells.

Compare Event
The Compare event is a special type of event which can be used when a complex sort facility is required. There are a number of sort options for sorting a column or group of columns (see next section) but the ‘Custom’ sort option in conjunction with the Compare event allows you to sort rows on an individual basis. To use this facility you would first populate the Flex Grid with data and then set the Custom sort option :-

 flxgrd.Sort = 9 'set Custom Sort Order (flexSortCustom)
The Flex Grid control then scans every adjacent pair of rows and generates a Compare event for each pair, it also returns the row numbers of the two rows it is currently accessing (in Row1 and Row2) and a Cmp value which you need to fill with a value, see below. The Compare event code looks something like this :-

Private Sub flxgrd_Compare(ByVal Row1 As Long, ByVal Row2 As Long, Cmp As Integer)

Code to compare the cell data in Row1 with the cell data in Row2 :-

if Row1 should appear before Row2 then set Cmp to –1.

if Row1 is equal to Row2 (or the order does not matter) then set Cmp to 0.

if Row1 should appear after Row2 then set Cmp to 1.

End Sub

To test this facility click the Trigger Compare button, the list is cleared first and then the Flex Grid Sort property is set to 9 to start the scan. The Cmp parameter is not shown in the list since it always shows 0. Note that this sort method may be up to 10 times slower than the conventional sort methods although it does give you more control on how the rows are sorted. Note also that this option is dependent on the settings of the Row and RowSel properties, if they are identical then all rows in the grid are tested, if they are different then only the rows between (and including) the Row and RowSel values are tested.

To test this first click on any row in the grid and click the Trigger Compare button, all rows are shown. Now click on a row and drag the mouse down a few rows so that the Row and RowSel fields show different numbers. Now click the Trigger Compare button, only the selected rows are shown in the list.

Some Events do not work ?
There are seven events (OLECompleteDrag to OLEStartDrag and Updated) which would normally be used for dragging and dropping text or images in a Flex Grid control, however, these do not work in MS Access (probably because they were designed for Visual Basic or other languages).

Resources

This form uses the tables tblProducts and tblSuppliers, the query qryProductsList, the form frmEvents and the module modFlexGridRoutines.

Flex Grid Utilities 2 - Show Flex Grid Properties

This example shows how you can program the Flex Grid control properties. The Flex Grid control shows a list of employees from the Northwind database table (tblEmployees) and the list box on the left of the form shows the main properties that can be set in Design mode.

Design Mode Properties

To change any of these properties just double click on the required property, the action taken will depend on what type of property it is. If it is one which can select a single option from a list, the property value will just step to the next one in the list, for example, the first property Special Effect will select from Etched, Shadowed, Chiseled, Flat, Raised or Sunken. If the property defines a colour the standard Colour Selection dialog box will be displayed where you can select a new colour for that property, click OK to make the change or Cancel to keep the current colour.

Note that setting some properties can automatically disable other properties. For example, setting the Merge Cells property to anything but Never will disable the Allow Big Selection property (even though this may be set to Yes). Use this form to check for any problems like this.

Setting Row Heights
You can show the rows in different heights, to do this enter a new value in the Row Height field at the top of the form. You can also show the header row as a different height by doing the same in the Header Height field. Note that in this demo grid the rows can only be set to the same value although in your own project each row could be set to a different height, as required.

You can also use the Allow User Resizing property to change the height of any row (although they will revert to the default size if you change any other property).

Setting Alignment, Font, Sort and Merge Attributes
The cell alignment, cell font attributes, column sorting and row and/or column merge facilities can be set for any of the columns in the grid. Note that for simplicity’s sake in this demo these facilities are only applied to a selected column although in practice you can use them for any column, row or even an individual cell.

To select the column you want to test first select the column header from the Column drop down box. Now select the required option in the Property drop down box. For example, to sort the ID column in ascending numerical order select ID from the Column combo box and then Sort: Numeric Ascending from the Property combo box.

If you select the Set Font Attributes option the Font Selection dialog form is displayed where you can select the font type, bold, italics, colour, etc, etc. If you select the Set Font Width option a pop up form is displayed, enter a numeric value for the font width on points.

If you select the Merge Column = True option you must also set the Merge Cells property in the Properties list box to Free or Restrict Columns. To test this option use the Title, City or Country columns since only these columns have identical values, you will probably also need to change the sort order so that identical cells are grouped together.

The Flex Grid Version No field at the bottom of the form shows the version number of your Flex Grid ActiveX control (mine shows 600). The first digit shows the major version and the last two digits show the minor version. This means that the value of 600 is equivalent to Version 6.00.

Resources

This form uses the tables tblProps and tblEmployees, the form frmProperties and the module modFlexGridRoutines.

General Purpose Routines

The module modFlexGridRoutines contains two procedures which can be useful when using the Flex Grid control. You can import this module into your own project and call the procedures from your own code.

SelectRange sub-routine

Use this sub-routine to define a group of cells for which you want to change a property. For example to change the background colour of the shaded cells in the grid below to yellow you would use the following code :-

 SelectRange flxgrd, 2, 1, 4, 3

'select cells Row2/Col1 to Row4/Col3
 flxgrd.CellBackColor = vbYellow

'paint cells in Yellow
where flxgrd is the name of the Flex Grid control, the first pair of numbers define the top left Row and Column numbers and the second pair of numbers define the bottom right Row and Column numbers.

	0
	1
	2
	3
	4

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	

	5
	
	
	
	

Note that to use this routine the Flex Grid FillStyle property must be set to Repeat. If you do not know the number of rows in the Flex Grid and you want to include the last row you can use the format :-

 SelectRange flxgrd, 2, 1, flxgrd.Rows - 1, 3 'select cells R2/C1 to last row/C3
where flxgrd.Rows – 1 defines the last row in the grid.

FlexGridClick sub-routine

This sub-routine is used to return various properties of the Flex Grid when the user clicks on any cell in the grid. There are three mandatory parameters and four optional parameters which can be returned. The basic functions are :-

Private Sub flxgrd_Click()

Dim vRow As Long, vCol As Long

 FlexGridClick flxgrd, vRow, vCol
'return Row & Column numbers for cell
 'process the code here, vRow holds row number, vCol holds column number

End Sub

Call the sub-routine in the Click event of the Flex Grid and pass it the name of the Flex Grid and two Long integer variables, on return the vRow and vCol variables will hold the Row and Column numbers of the selected cell, including a cell in a fixed row or column.

There are also four other properties that can be returned by adding further optional variables to the sub- routine call. For example :-

Dim vRow As Long, vCol As Long, vText As String, vBack As Long

Dim vRowData As Long, vColData As Long

 FlexGridClick flxgrd, vRow, vCol, vText, vBack, vRowData, vColData

 txtInfo = vText

 txtInfo.BackColor = vBack

The variable vText returns the text contents of the selected cell. vBack returns the background colour of the selected cell and vRowData and vColData return the RowData and ColData values. Note that the ForeColor and BackColor values of a Flex Grid default to 0 (i.e. Black) if they have not been changed. This routine, therefore, returns the vbWhite value for the background colour if it is still set to 0. To use black in a Flex Grid it is usually necessary to use the value 1 instead of 0.

If you do not need all the optional parameters just leave a gap but still keep the commas (unless it is the last parameter in which case the comma is not required), in other words the line must not end with a comma.

References

To add a Flex Grid control to a form you will need to have the appropriate flex grid license. Microsoft Access does not provide this license but you can get it by downloading the free Visual Basic 2008 Express Edition software from Microsoft at :-

 http://www.microsoft.com/express/vb/
which includes the Flex Grid license. Just download the vbsetup.exe file and run it. This will then download the full VB2008 file (it's about 80MB) and install it on the PC (and you don't even have to run it), the Flex Grid control can then be inserted into your forms. To use the VB2008 program itself you have to register it within 30 days, it is probably worth registering anyway, it is free and you never know if you may want to write a VB program one day.

Register the FlexGrid Control using code

You can register the control in code using the DllRegisterServer API. Add the code below to a code module and call it from your project. Not sure if registering it every time you run your database is a good idea so it is probably a good idea to do it once when you first install the database and then set some flag to stop it happening again.

Declare Function DllRegisterServer Lib "MSFLXGRD.OCX" () As Long

Const ERROR_SUCCESS = &H0

Public Sub RegisterFlexGrid()

'To register your DLL (or OCX) use this function

If DllRegisterServer = ERROR_SUCCESS Then

 MsgBox "Registration Successful"

Else

 MsgBox "Registration Unsuccessful"

End If

End Sub

Set the Flex Grid Reference

When you add a Flex Grid control to a form in your project you must also make sure you have set up a reference to it in the Registry. After you have added the control to a form open the VBA window for the form (or any form in fact) and click on Tools -> References… to display the References dialog form. If the reference below is not already showing then locate the flex grid reference in the list and tick the box. The reference name is usually :-

Microsoft FlexGrid Control 6.0 (SP6)

Although the version number may change in the future. The location field below the list box should show something like :

Location: C:\WINDOWS\system32\msflxgrd.ocx

If you cannot find the control in the list you can click the Browse button and locate it (although I think it would be advisable to save it in the system32 folder). If you do, remember to change the Files of type: drop down box in the file selector dialog form to ‘ActiveX Controls (*.ocx)’ first.

History

Version 1.1 7-10-2006

Code modified to work on Windows 2000.

Version 1.2 27-10-2006

Project Management and Multiple Columns forms added.

Version 1.3
1-1-2007

Code modified so that the Common Dialog Active X control is not required when selecting colours and fonts as this control is not always present on user’s systems.

Version 1.4
4-8-2009

Flex Grid switchboard form and switchboard wizard added.

Time Sheet Management form added.

Northwind Orders Graph form added.

Diary Manager and Calendar form deleted. See separate Calendar demo on Web site for this.

Contact Information

If you find any bugs or errors in the demo program or this documentation please contact me :-

 E-mail address: pdh_software@btinternet.com or peter.hibbs@btinternet.com
Peter Hibbs

Dorset

United Kingdom

